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Abstract

Interest in relational and first-order languages for probabil-
ity models has grown rapidly in recent years, and with it
the possibility of extending such languages to handle deci-
sion processes—both fully and partially observable. We ex-
amine the problem of extending a first-order, open-universe
language to describe POMDPs and identify non-trivial repre-
sentational issues in describing an agent’s capability for ob-
servation and action—issues that were avoided in previous
work only by making strong and restrictive assumptions. We
present a method for representing actions and observations
that respects formal specifications of the sensors and actu-
ators available to an agent, and show how to handle cases—
such as seeing an object and picking it up—that could not pre-
viously be represented. Finally, we argue that in many cases
open-universe POMDPs require belief-state policies rather
than automata policies. We present an algorithm and exper-
imental results for evaluating such policies for open-unverse
POMDPs.

1. Introduction
Relational and first-order languages for probability models
(as well as their close relatives the probabilistic program-
ming languages) constitute an important development for AI
in general and for machine learning in particular (Getoor
and Taskar 2007). The availability of such expressive lan-
guages should make it possible to write not just complex
probability models but also complex decision models—the
foundation for rational behavior in autonomous agents. To
achieve this goal, probabilistic languages can be extended
with information about actions, observations, and rewards.
As we show, however, such extensions raise significant diffi-
culties. We argue that as machine learning and probabilistic
AI researchers grapple with these more expressive represen-
tations, it will be necessary to use techniques from logical
AI in conjunction with probabilistic techniques to produce
representations that are both expressive enough to model the
real world and mean exactly what is intended. In this pa-
per, we use such techniques to develop a representation of
first-order decision models. We also describe methods for
evaluating expressive belief-state policies for such models.

Decision models for agents operating in partially ob-
servable non-deterministic environments are expressed as
partially-observable MDPs (POMDPs). The observation

and action models for the agent play a key role in a POMDP
and naturally, determine its optimal solution policies. When
we move to the relational or first-order setting, we have to
contend with the fact that observations, rather than being
values of variables, become sentences describing properties
of objects using names for those objects. It turns out to be
quite tricky to say in a formal way what a given sensor can or
cannot supply in the way of observation sentences; express-
ing the agent’s capability for action is also tricky, especially
when the agent can act on objects whose existence has been
determined only through its sensors. Consider the following
example:

The sensors of an airport security system include passport
scanners at check-in kiosks, boarding pass scanners, X-ray
scanners, etc. A person passing through the airport gener-
ates observations from each of these scanners. Thus, the
passport scanner at location A may generate observations
of the form IDName(pA,1) = “Bond”, IDNumber(pA,1) =
174666007, HeightOnID(pA,1) = 185cm, . . .; a boarding-
pass scanner at B may generate a sequence of the form Des-
tination(pB,7) = “Paris”, IDNumber(pB,7) = 174666007,
and finally, an X-ray scanner atC may generate observations
of the form MeasuredHeight(pC,32) = 171cm, Measured-
Height(pC,33) = 183cm.

In these observation streams, the symbols pA,i, pB,j and
pC,k are place-holder identifiers (essentially Skolem con-
stants or “gensyms” in Lisp terminology). Although each
use of a given symbol necessarily corresponds to the same
individual, different symbols may or may not correspond to
different individuals; thus, it is possible that pA,1 and pC,32

refer to the same person, while it is also possible that pA,1

and pB,7 refer to different people even though they are car-
rying a passport with the same ID number.

Such a scenario can be modeled probabilistically by a
first-order, open-universe language such as BLOG (Milch
et al. 2005), which enables reasoning about identity uncer-
tainty. To make decisions—such as searching or arresting
a given individual—we need a POMDP with rewards, ac-
tions, and an observation model. Informally, we might say,
“Everyone in the security line will get scanned”:

∀x InLine(x)→ Scanned(x)

and “For everyone who gets scanned, we will observe a mea-
sured height”:



∀x Scanned(x)→ Observable(MeasuredHeight(x)). (1)

So far, so good. Now, suppose we know, “Bond and his
fiancee are in the security line.” While it is true, in a sense,
that we will get a measured height for Bond’s fiancee, it is
not true that the X-ray scanner will tell us:

MeasuredHeight(Fiancee(Bond)) = 171cm.

Technically, the problem arises because we are trying to
substitute Fiancee(Bond) for x in the universally quanti-
fied sentence (1), but one occurrence of x is inside Observ-
able(·), which is a modal operator. Practically, the problem
arises because the sensor doesn’t know who Bond’s fiancee
is. The same issue can arise on the action side: telling the
security guard to “Arrest Bond’s fiancee” doesn’t work if the
guard doesn’t know who Bond’s fiancee is.

These issues stem from two fundamental, related prob-
lems that this paper focuses on: overstating what can be
sensed and passing commands with arguments that don’t re-
fer to anything meaningful for actuators.

In addition to presenting a formal language for defining
OUPOMDPs, we explain how policies may be represented
and we describe algorithms for evaluating such policies. We
focus in particular on policies that depend directly on the be-
lief state—in contrast with many papers in the literature that
focus on policies expressed as observation–action trees or
automata—because the observation space of an OUPOMDP
may be unbounded. In the airport example, the agent’s be-
lief state includes states with any number of persons in the
queue, and any person being at the scanner. In such a belief
state, the set of possible actions and observations—even if
sensor and actuator specifications are captured accurately—
is infinite. On the other hand, a first-order language can be
used to specify effective high-level policies of the form: “if
the probability of the person at the scanner being a terrorist
is above a certain threshold, arrest that person”. We present
a novel approach that ensures the conformance of such poli-
cies to the available sensors and actuators during their eval-
uation.

We begin in §2. by describing how POMDPs may be de-
fined as directed graphical models by extending dynamic
Bayesian networks (DBNs). We focus in particular on the
observation model. In order to extend these ideas to first-
order open-universe POMDP specifications, we being with
system-independent models of sensors and actuators. We
avoid the pitfalls of standard solutions by defining a meta-
predicate representing the ability to observe something and
formal semantics capturing the set of allowed decisions and
the observations that may be expected when the agent is in
a given state (§4.). We show that the resulting framework
models sensor and actuator specifications accurately. We
also develop a novel algorithm for evaluating OUPOMDP
policies (§5.) and present several results from an imple-
mentation (§6.). Finally, we discuss the ways in which
previous attempts to define first-order POMDPs have used
strongly restricted languages to avoid these problems alto-
gether. These restrictions do not allow an agent to walk into
a room, see something, and pick it up (§7.).

2. POMDPs
A POMDP defines a decision-theoretic planning problem for
an agent. At every step, the agent executes an action, then
the environment enters a new state, then the agent receives
an observation and a reward.

Definition 1. A POMDP is defined as 〈Q,A,O, T,Ω, R, γ〉,
whereQ,A,O are finite sets of state, action and observation
symbols; T (Qt+1 = q′ | Qt = q, At = a) defines the tran-
sition model, i.e., the probability of reaching state q′ if action
a is applied in state q; Ω(Ot+1 = o | Qt+1 = q′, At = a)
defines the observation model, i.e., the probability of receiv-
ing an observation o when state a′ is reached via action a;
and R : Q × A → R defines the reward that the agent
receives on applying a given action at a given state. The re-
wards obtained by the agent are aggregated via a discounted
sum,

∑
i=1...∞ γi · r(i) where r(i) is the reward obtained at

timestep i and γ ≤ 1.

A belief-state in a POMDP is a probability distribution
over the set of states Q. Since the agent may only know
a belief-state rather than the true state at each timestep,
POMDP solutions have to map belief-states to actions. In
most representations, such mappings take the form of a func-
tion that maps observation histories to actions (Kaelbling,
Littman, and Cassandra 1998). The optimal policy maxi-
mizes the expected value of the total discounted reward ob-
tained.

A DBN (Dean and Kanazawa 1989) describes a factored,
homogeneous, order-1 Markov process as a “two-slice”
Bayesian network showing how variables at time t + 1 de-
pend on variables at t. At each time step, any subset of vari-
ables may be observed. To represent POMDPs, Russell and
Norvig 1995 assume a fixed set of always-observable evi-
dence nodes and define dynamic decision networks (DDNs)
as extensions of DBNs with action and reward node:
• An action variable At whose values are the possible ac-

tions at time t. For now, assume this set of actions is fixed.
The POMDP’s transition model is represented through the
conditional dependence of variables at t + 1 on the value
of At and other variables at t.

• A reward variableRt, which depends deterministically on
At and other variables at time t.
A general model for POMDPs however needs to specify

which nodes will be evidence nodes at a given timestep—
different specifications correspond to different POMDPs. In
order to avoid a not-missing-at-random (Little and Rubin
2002) scenario when the set of evidence nodes is not fixed,
we can define for each variable X that may be observed,
a second Boolean variable ObsX that captures whether or
not X is observed 1. This factors out dependencies for ob-
servability from dependencies for the variable values. Thus,
in order to define POMDPs we can define DDNs consisting

1An alternative would be to say that “null” values are observed
when a variable is not observable. However, this approach has dis-
tinct disadavantages as it requires (a) unnecessarily large parent
sets for evidence variables capturing when null values may be ob-
tained, and (b) additional mechanisms for handling dependencies
of child nodes of variables that may get a null value.



of the following nodes in addition to the action and reward
nodes:
• A set of Boolean observability variables ObsXt, one for

each ordinary variable Xt. Each observability variable is
necessarily observed at each time step, and ObsXt is true
iff Xt is observed. Observability variables may have as
parents other observability variables, ordinary variables,
or the preceding action variable.2 The DBN with X and
ObsX variables defines Ω.
In this model, an always-observable Xt has an ObsXt

with a deterministic prior set to 1.
In order to define first-order OUPOMDPs, we need to ex-

tend first-order probability models in a manner analogous to
the DDN extension of DBNs. However, as we will show
below, the analogous extension leads to conflicts with what
may be known to the agent during decision making, and re-
sults in the models of sensors and actuators with unintention-
ally broad capabilities as seen in the introduction. We begin
with a brief summarization of the terminology of first-order
logic and open-universe probability models.

3. First-Order Probability Models
First-Order Vocabularies Given a set of types T =
{τ1, . . . τk}, we define a first-order vocabulary as a set of
function symbols with their type signatures. Constant sym-
bols are represented as zero-ary function symbols and pred-
icates as Boolean functions. Given a first-order vocabulary,
a structure is defined as a tuple 〈U , I〉 where the universe
U = 〈U1, . . .Uk〉 and each Ui is a set of elements of type
τi ∈ T . The interpretation I has, for each function symbol
in the vocabulary, a function of the corresponding type sig-
nature over U1, . . . ,Uk. The set of types includes the type
Timestep, whose elements are the natural numbers. Func-
tions whose last argument is of type timestep are called flu-
ents. We represent possible worlds using structures. The
values of all static functions and fluents with timestep fixed
at t denote the state of a possible world at timestep t. We
represent actions by defining the value of a fluent at timestep
t+1 in terms of non-fluents and fluents at timestep t. The re-
ward function can be expressed as a fluent in a similar man-
ner (cf. Reiter’s (2001) successor-state axioms). In order
to define probabilistic action effects under full observability,
these ideas can be extended to include a probability distri-
bution for all possible action effects (Sanner and Boutilier
2009).
Open-Universe Probability Models in BLOG Our ap-
proach can be applied to formal languages for generative,
open-universe probability models (OUPMs). BLOG (Milch
et al. 2005; Milch 2006) is one such language. We refer
the reader to the cited references for details on this system,
and discuss briefly the components relevant to this paper. A
BLOG model consists of two types of statements: (1) num-
ber statements, which specify conditional probability dis-
tributions (cpds) for the number of objects of each type in
the universe of a structure; and (2) dependency statements,

2Observability variables capture the full range of possibilities
in the spectrum from missing-completely-at-random (MCAR) to
not-missing-at-random (NMAR) data (Little and Rubin 2002).

1 Type Urn, Ball;
2 origin Urn Source(Ball);
3 #Urn ˜ Poisson(5);
4 #Ball(Source = u) {
5 if Large(u) then ˜ Poisson(10)
6 else ˜ Poisson(2)};
7 random Boolean Large(Urn u)
8 ˜ Bernoulli(0.5);

Figure 1: A BLOG model illustrating number statements.

which specify cpds for the values of functions applied on the
elements of the universe.

Each type can have multiple number statements and each
number statement can take other objects as arguments. Fig. 1
shows a simple example of a BLOG model with two types,
Urn and Ball. Intuitively, the model expresses a distribution
over possible worlds consisting of varying numbers of urns
with varying numbers of balls in each urn. The number of
urns follows a Poisson(5) distribution (line 3). The number
of balls in an urn depends on whether or not the urn is Large.
Origin functions map the object being generated to the argu-
ments that were used in the number statement that was re-
sponsible for generating it. In Fig. 1, Source maps a ball to
the urn it belongs to. The number of balls in an urn follows a
Poisson(10) distribution if the urn is Large, and a Poisson(2)
distribution otherwise (lines 4-6). Finally, whether or not an
urn is Large follows a Bernoulli(0.5) distribution (lines 7 &
8).

BLOG can express dependencies capturing successor-
state axioms in a straightforward manner. For example, a
sendToScanner(x, t) action may result in the person x going
to the scanner. Let followedInstructionCPD, leftScanner-
CPD and defaultScannerCPD denote respectively the prob-
ability distribution that a person follows instructions, that
s/he has left the scanner and that s/he is already at the scan-
ner. The following dependency captures the effect of this
action on the predicate atScanner.
random Boolean atScanner(Person x, Timestep t+1) {

if applied_sendToScanner(x,t)
then ˜ followedInstructionCPD()

else if atScanner(x, t)
then ˜leftScannerCPD()

else ˜defaultAtScannerCPD()};

These formulations do not address which terms can be used
in action arguments or observations. A natural generaliza-
tion of the obsX idea discussed in §2. is to write rules of
the form: observable(ψ(x̄)) {if ϕ(x̄) then ∼ cpd1}, where
ϕ and ψ are arbitrary FOL formulas. WLOG, ψ and ϕ can
be considered to be predicates defined using FOL formu-
las with variables in x̄ as free variables. The interpretation
of this formula would be “ψ(x̄) is observed with probabil-
ity given by cpd1 when ϕ(x̄) holds”. Problems with this
framework that were discussed in the introduction are conse-
quences of the axiom of universal instantiation in first-order
logic. This axiom states that if ∀x α(x) is true, then for
any ground term t, α(t/x) (the version of α(x) where all
free occurrences of x are replaced by t) must also be true.
The example in the introduction was a result of substitut-
ing Fiancee(Bond) for x in Eq. 1. In modal contexts such as
observability, this axiom has to be restricted (Levesque and



Lakemeyer 2000): we can only substitute x with terms that
are, in some sense, “known” to the agent. In the following
sections we utilize this concept to develop the semantics for
observation and decision statements.

4. OUPOMDP Models in DTBLOG
In this section we present the key components of decision-
theoretic BLOG (DTBLOG), which adds to the BLOG lan-
guage decision variables for representing actions and meta-
predicates for representing observability. The declarative
semantics for these extensions clarify the sensor and actua-
tor specifications they define. DTBLOG models can also be
constructed with such specifications as inputs to the model-
ing process. The procedural semantics for these extensions
define the DTBLOG engine. These semantics will be used
to compute the observations possible in a belief state as well
as to generate the possible effects of executing decisions on
a given belief state.

4.1 Sensor/Actuator Specifications
We first define representation-independent mathematical
specifications of sensors and actuators. These specifications
describe the types of vectors returned by sensors and ac-
cepted by actuators.

Definition 2. A sensor specification S is a tuple 〈T̄S , τS〉
where T̄S is a tuple of types and τS is a type.

T̄S defines the type-vector of observation values that S
produces and τS defines the type of new symbols that it
may generate. E.g., an X-ray scanner can be specified as
scanner = 〈〈PersonRef, Real〉, 〈PersonRef〉〉. Such a scan-
ner can generate new symbols of type PersonRef and returns
observation tuples of the type 〈PersonRef,Real〉.
Definition 3. An actuator specification A is a tuple of types
T̄A denoting the types of its arguments.

An actuated camera may be able to take a picture
given an orientation and focusing distance: TakePhoto =
〈Orientation,Real〉.

Any OUPOMDP definition has to specify a set of avail-
able actions, state transition system, observation function
and the reward function. Independent of these components,
we can use sensor and actuator specifications to define desir-
able OUPOMDP definitions as those which enforce the use
of unambiguous terms of the correct types in the possible
decisions and observations.

Definition 4. An OUPOMDP is well-defined wrt a set of
sensor specifications S and actuator specifications A iff ev-
ery decision for an actuator A ∈ A and every evidence
statement attributed to a sensor S ∈ S has as its arguments
terms of types prescribed by A and S respectively. Further,
in the agent’s belief state where evidence is obtained or a
decision made, (a) each term used as an argument in an
evidence statement for S must have a unique evaluation in
terms of elements of the universe or symbols generated by
S and (b) each term used as an argument in a decision for
A must have a unique interpretation as an element of the
universe.

4.2 Sensors in DTBLOG
As noted above, sensors provide two kinds of inputs to the
agent: symbol observations represent the symbols that they
generate, and relational observations capture sensed prop-
erties. In the following, the declarative semantics define a
set of sensor specifications in DTBLOG. The procedural se-
mantics of the DTBLOG engine ensure that when it gener-
ates an observation, it respects the sensor specifications as
well as constraints on the agent’s available knowledge.

Declarative Semantics Given a sensor S = 〈T̄s, τs〉, we
model τs as a type whose extension is the set of symbols
generated by that sensor. We specify such a sensor S using
the following components in DTBLOG:
• A predicate VS with arguments T̄S , t, representing the tu-

ples returned by the sensor.
• The statement ObservableType(τs); denoting that

symbols of type τs are returned by the sensor. Number
statements for τS constitute a generative model for the el-
ements generated by S. Each number statement for a sen-
sor symbol of type τ includes a origin function τ time
which maps the symbol to the time when it was gener-
ated.

• A dependency for Observable(VS(T̄S ,Timestep)), denot-
ing the conditions when the sensor S is likely to generate
a relational observation.
A DTBLOG model for the X-ray scanner can be repre-

sented as:
ObservableType(PersonRef);
#PersonRef(Src = p, PersonRef_Time=t) {

if AtScanner(t)=p then ˜Bernoulli(0.5)
else = 0};

random Bool Observable(V_scanner(p, h, t)) {
if AtScanner(source(p), t) then ˜Bernoulli(0.5)
else = false};

For ease in representation, we also allow syntax for cap-
turing sensors that return function values. For instance, it
may be convenient to represent the scanner as a sensor that
provides values of the measured height, captured by the
function MeasuredHtscanner(p, t). In this case, the rela-
tional observability statements would provide dependencies
for Observable(MeasuredHtscanner(p, t)).

Procedural Semantics Intuitively, if the environment is
in state q, and Observable(ϕ(x̄)) (or ObservableType(τ)) is
true in s, then the value of ϕ(x̄) (or all symbols of type τ )
must be obtained as evidence in the state q. The procedu-
ral semantics for DTBLOG implement this intuition, while
ensuring that x is only substituted with terms known to the
agent.
Symbol Observations All elements generated via a sen-
sor’s symbol observability statement are assigned unique
names and provided to the agent as an evidence statement.
This is achieved by compiling a statement of the form
ObservableType(τ) into:
random Int Number τ(t)=#{τ x: τ time(x) ==
t};
Observable(Number τ(t))=true;

This compilation uses the procedural semantics for ob-
servability of relations, discussed below. If the model in-



cludes the statement ObservableType(τ), the DTBLOG en-
gine generates evidence statements for the symbols of type
τ at each timestep. For a state where where k(t) =
Number τ(t), the DTBLOG engine provides an evidence
statement of the form:
obs {τ c:τ time(c) == t} = {c1, ..., ck(t)};

The semantics of BLOG ensure that c1, . . . , ck(t) are in-
terpreted as distinct objects.
Relational Observations For every true
Observable(ϕ(x̄)) atom in a state, the DTBLOG en-
gine creates an observation statement where all arguments
are “evaluated”. E.g.,
obs MeasuredHt scanner(pref17, 1) = 171;

Each argument in such evidence statements is evaluated-
out and can only be (a) a predefined symbol with a fixed
interpretation, (b) a symbol generated by the same sensor or
(c) the application of any number of deterministic functions
on (a) and (b). In particular, evidence statements generated
by the DTBLOG engine only use arguments of the form (a)
and (b). Interactive sessions where a user provides evidence
to the engine may provide observations that have partially
evaluated terms of the form (c).

This formulation allows models to express accurately
the terms that are observable and can be used in obser-
vations. Returning to the informal example described in
the introduction, under this formulation the DTBLOG en-
gine will not generate an observation of the form Mea-
suredHeight(Fiancee(Bond)) = 150cm if the value of Fi-
ancee(Bond) has not been observed, even when Measured-
Height() is observable for all persons.

4.3 Actuators in DTBLOG
Decision variables are declared using the keyword
decision.

Declarative Semantics An actuator specification A = T̄A
is specified in DTBLOG as:
decision apply a(T̄A, Timestep);
For example the actuated camera can be specified as:
decision apply TakePhoto(Orientation,
Distance,
Timestep);
Procedural Semantics A user can provide values for
decision variables either interactively or through a policy
specification. Without any further restrictions, this would
lead to unintended situations where the user provides a
decision of the form:
apply TakePhoto(Orientation(Loc(Src(pref17),
t)),
DistanceTo(Loc(Src(pref17), t)), t)=true;
even when Loc(Src(pref17), t) has not been observed. Such
a decision would not only be meaningless to the actuator, it
can lead to “fake” solutions, e.g. if the desired effect was
to take a picture of the person who generated pref17 at the
scanner, but has since moved away.

The DTBLOG engine evaluates terms in a decision as-
sertion only if (a) their values have been observed, (b) their
values are fixed in the model, or (c) they are constructed us-
ing deterministic functions applied on terms of the form (a)

and (b). If a decision includes as its arguments terms that
were not observed, state update subroutines update the state
without applying the decision.

A full DTBLOG model for the airport domain example is
presented in the appendix.

Let M(S,A) be a DTBLOG model defined using the sets
S and A of sensors and actuators respectively. Let VM be
the first-order vocabulary used in M . Then, M defines an
OUPOMDP 〈Q,A,O, T,Ω, R〉 where the set of states Q is
the set of states corresponding to the possible worlds of vo-
cabulary V . A is the set of all instantiated decision functions
corresponding to A that are allowed in some state q ∈ Q
and O is the set of all instantiated functions corresponding
to sensor specifications in S that are allowed in some state
q ∈ Q. The transition function T and observation function
Ω are defined by the probabilistic dependency statements in
M .

Note that our formulation does not place any constraints
on the successor-state axioms or the dependencies for values
of observations. Since a BLOG model must include depen-
dencies for every declared function, these components have
to be defined in any DTBLOG model whose vocabulary in-
cludes the decision variables and observation relations cor-
responding to sensors. The following result follows from the
procedural semantics above and shows that this formulation
corresponds to a modal logic of observed information rather
than of the complete knowledge possessed by the agent.

Lemma 1. The procedural semantics of DTBLOG ensure
that (a) arguments in the evidence statements generated
by the DTBLOG engine for a sensor S only use symbols
that are generated by S or are predefined and thus have
unique interpretations in the agent’s belief-state (b) values
of terms used as arguments in decisions have been observed
or are predefined and thus have unique interpretations in the
agent’s belief-state.

In other words, the terms that the agent may expect in an
observation or that it uses in a decision in a given belief-state
have unique values in all states with non-zero probability
under that belief-state. Lemma 1 leads to the main result of
this section.

Theorem 1. LedM be a DTBLOG model defined using sen-
sor and actuator specifications S and A respectively. IfM
satisfies BLOG’s requirements for well-defined probabilistic
models then it constitutes a well-defined OUPOMDP model
wrt S and A.
Actions on Sensor-Generated Symbols For represen-
tational convenience, we also allow the use of sensor-
generated symbols in actions that can be compiled down
to primitive actions respecting the semantics defined above.
Consider a situation where the scanner reports the estimated
location of the person generating a person reference (the
function Location maps person references to locations) in
addition to their measured heights. We then define a cam-
era action that takes a snapshot given a PersonRef. In the
following example, the functions RelativeOrientation and
CamDistance map positions to the orientation and distance
relative to the camera, respectively.



apply TakePhotoPRef(p ref, t) :=
apply TakePhoto(RelativeOrientation(Location(p ref)),

CamDistance(Location(p ref)), t)
Every instance of apply TakePhotoPRef() is compiled out

into the primitive action apply TakePhoto(). This allows the
agent to act on the objects detected through its sensors. A
generative model may specify when the effect of an action
on a person reference is likely to have the desired effect.
The notion of such high-level actions can be developed fur-
ther. For instance, one could define an action that, given a
PersonRef, determines the maximum likelihood estimate for
the position of the person who generated that reference and
takes a picture of that location. Such actions would have to
be specified outside the DTBLOG model since they need to
execute queries on the model itself to construct their argu-
ments. Probabilistic effects of such actions however have to
be defined in the model to be consistent with their external
definitions. Automatically constructing the effect descrip-
tions of such actions is left for future work.
Belief States and Transitions in DTBLOG DTBLOG
represents belief-states using collections of sampled, possi-
ble states. The initial belief state is generated using BLOG’s
existing sampling subroutines to sample possible worlds
corresponding to the state at timestep 0 specified in the DT-
BLOG model. The application of a decision updates each
possible world to the next timestep using the stated depen-
dencies (aka probabilistic successor-state axioms).

As a notable consequence of the semantics and belief state
representation used in DBTLOG, when the belief state is up-
dated wrt to a decision, the DTBLOG engine generates the
set of observations corresponding to each possible updated
state.

5. OUPOMDP Policies
We consider two types of policy representations in this pa-
per. Finite-state controller (FSC) policies map sequences
of observations to actions. FSC policies can take the
form of tree-structured contingent policies or cyclic con-
trollers (Hansen 1998) and are widely used in the POMDP
literature. However, in the case of OUPOMDPs such poli-
cies can be very difficult to construct. In the airport domain,
for example, searching in the space of FSC policies amounts
to considering all possible sequences of ID and biometric
measurements stemming from arbitrary numbers of persons.
Instead, we focus on developing a general policy evaluation
framework that applies on FSC policies as well as a gen-
eral class of belief-state query (BSQ) policies. BSQ policies
map the results of first-order queries on open-universe be-
lief states to actions. A BSQ policy has the form the form
if Pr(ϕ1(x)) ∈ I1 then do a1(x); else if Pr(ϕ2(x)) ∈ I2
then do a2(x) . . ., where ϕk(x) are first-order formulas and
Ik ⊆ [0, 1] are intervals. The variable x is implicitly existen-
tially quantified and bound to a value that satisfies ϕk, if any.
High-level domain specific BSQ policies are often easier to
specify for OUPOMDPs. For instance one could simply say
if the probability of Src(p ref) being a terrorist and leaving
the area soon is more than θ, then detain the person at esti-
mated location of Src(p ref). On the other hand, it would be
very hard to express a similar policy using an FSC policy. If
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Figure 2: Illustration of one iteration of Alg. 1

Algorithm 1: EvalPolicyBFS
Input: DTBLOG modelM, initial belief state b0, policy π,

horizon h
1 Step← 0; b← b0;
2 if Step < h then
3 a← GetAction(π, b);
4 b’← BLOG Update(b, a);
5 {b′1, . . . , b′k} ← ObservabilityPartition(b′);
6 return Average(EvalPolicyBFS(M, b′1, h−

1), . . . , EvalPolicyBFS(M, b′k, h− 1));

7 return AverageValue(b′);

a BSQ policy evaluation algorithm is available, partial BSQ
policies of this form can be effectively refined into concrete
BSQ policies by identifying appropriate values for parame-
ters like θ.

5.1 Approximate Policy Evaluation

Policy evaluation algorithms for OUPOMDPs need to ad-
dress two main concerns. Algorithms that assume the fea-
sibility of considering all possible observations as the result
of action application on a belief state are infeasible, because
OUPOMDP belief states may capture possible worlds with
unknown and unbounded numbers of objects. As a result,
the number of possible observations resulting from an appli-
cation of an action on a belief state can be infinite. A sec-
ondary concern arises when evaluating BSQ policies: the
process of obtaining the action to be applied using a BSQ
policy requires an estimation of the agent’s current belief
state. Computationally this is much more expensive than
determining the action to be applied under an FSC pol-
icy, which only needs to look-up the action corresponding
to an observation sequence. The need for state estimation
while evaluating BSQ policies precludes the use of exist-
ing sampling-based algorithms that do not keep track of the
agent’s belief state (e.g., PEGASUS (Ng and Jordan 2000)).

The policy evaluation algorithm presented below works
for both representations by keeping a sampled estimate of
the agent’s current belief state. Before describing our main
algorithm, we describe the necessary elements using a ver-
sion (Alg. 1) that conforms to existing ideas of policy eval-
uation for POMDPs. This algorithm correctly evaluates
OUPOMDPs, but is unlikely to perform well in practice.
We then introduce an algorithm based on particle filtering
to address the first algorithm’s limitations and prove that it
converges to the correct value estimate. We assume that the



number of possibly observable random variables is finite but
unbounded in each possible world. Note that the number
of possible observations from a belief state can still be infi-
nite, since there is no upper bound on the number of possible
worlds in a belief state.

At each timestep, the EvalPolicyBFS algorithm (Alg. 1;
Fig. 2) essentially applies an action on a sampled repre-
sentation of the possible belief states and samples the set
of observations to branch over. The initial belief state b0
is captured by the DTBLOG model M. In every succes-
sive timestep, the algorithm maintains collections of sam-
pled possible worlds representing the current possible belief
states. In order to update a belief state into the next timestep,
it uses an external policy specification π on a belief state b
to determine the action π(b) to be applied This determina-
tion incorporates the knowledge considerations described in
§4.3, which may lead to a no-op action being applied if π(b)
does not satisfy the required conditions. We then update all
the sampled worlds representing b to the next timestep. This
is done by setting the decision variable corresponding to a
to be true in each possible world and then propagating each
world to the next timestep by sampling the values of random
variables corresponding to the next timestep. This provides
the updated belief state b′ (line 5). Since observable func-
tions are treated like any other functions in our formulation,
this update also instantiates their values, as well as the values
of the observable() meta-predicates.

As discussed earlier, the set of functions for which ob-
servable() is true in each world determines the observations
that are produced for that member of the belief state. The
algorithm partitions the possible worlds according to obser-
vations received in them. This results in a set of sampled
belief states {b′1, . . . , b′k}, one corresponding to each unique
combination of observations among the possible worlds rep-
resenting b′ (line 5). The execution then recurs, calling
EvalPolicyBFS on each of these belief states with the target
horizon decremented. In the terminal case of this recursion,
the algorithm returns the average of the value function for
all possible worlds in the updated belief state b′.

Alg. 1 uses sampling to address the problem of branch-
ing over infinitely many possible observations. However,
since it has to start with a finite set of possible worlds rep-
resenting the initial belief state and partitions them in each
timestep, its variance increases rapidly with the timestep due
to a shrinking number of sampled worlds in each successive
belief state.

Our main algorithm (Alg. 2) overcomes this difficulty by
using a particle filter to follow different sequences of possi-
ble observations (Fig. 3). This is done by selecting at each
timestep, at random, one of the possible worlds in the belief
state corresponding to that timestep, and using its observa-
tions as evidence. Thus, each iteration of the while loop
(line 3) corresponds to a particle filter that maintains exactly
one belief state at each timestep and follows a sequence of
sampled observations.
Theorem 2. The result of EvalPolicyDFS(M, b0, π, h) con-
verges to the true expected value of π after h timesteps start-
ing with the belief state b0 wrt the OUPOMDP M in the
limit of infinitely many samples and infinitely many particles
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Figure 3: Illustration of one iteration of Alg. 2

Algorithm 2: EvalPolicyDFS
Input: DTBLOG modelM, initial belief state b0, policy π,

horizon h
1 repeat
2 Step← 0;
3 while Step < h do
4 a← GetAction(π, b);
5 b’← BLOG Update(b, a);
6 w← SampleWorld(b’); o← ObservationsFrom(w);
7 bStep+1 ← BLOG ReSample(b’, o ); Step++;

8 Add AverageValue(bStep) to SetOfValueSamples;
until SampleLimit reached;

9 return Average(SetOfValueSamples);

per belief state.

Proof. By convergence results for particle filters, a single
run of EvalPolicyDFS converges to the expected value of
the policy while following a particular sequence of observa-
tions. When run with different random seeds, we get a set of
sampled values, each corresponding to a particular sequence
of possible observations when following π. Convergence
to the true expected value is guaranteed because at each
timestep, the probability of selecting a particular observation
approaches the likelihood of that observation in the limit of
infinitely many samples in the initial belief state.

Alg. 2 has several properties that make it desirable for
practical use. The main operations of updating particles can
be carried out in parallel, and each observation sequence can
be evaluated in parallel. It computes the expected value of a
path in time linear in the number of timesteps and the num-
ber of particles.

6. Empirical Results
We describe the results of our experiments with an imple-
mentation of Alg. 2 on two domains.
Tigers This problem is an open-universe version of the
popular Tiger POMDP (Kaelbling, Littman, and Cassandra
1998). The agent is in a circular room with 10 doors. There
are an unknown number of tigers behind the doors, who may
move from a door to its neighbor at each timestep. Multiple
tigers may be behind a door. The objective is to open a door
without a tiger behind it and enter it.

The agent has two actions, a listen(Timestep t) action that
allows it to make inaccurate observations about the sounds
made by tigers at timestep t, and an enter(Door d, Timestep
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Figure 4: Estimated values with increasing particle count (θ =
0.8).
t) action which it can use to open a door and enter. When
listen is applied, the agent obtains a sound from each tiger
with probability 0.5.
random Bool observable(Sound) = true;
#Sound(Source = m, Time_Sound = t) {
if apply_listen(t-1)
then ˜ Bernoulli(0.5)

else = 0};

The listen action also gives a noisy estimate of the doors
from which sounds came. If a sound is made by a tiger at
door d, the probability of observing that a sound was made
at d is 0.75, and that of observing that a sound was made
at each of the doors (d + 1 mod 10) and (d − 1 mod 10)
is 0.25. At each timestep, each tiger stays behind its current
door with probability 0.4 and moves to each of the neighbor-
ing doors with probability 0.3. The agent receives a reward
rsafe for entering a door without tiger, rlisten for listening,
and rdanger for entering a door with a tiger behind it.

The unknown number of tigers, their movement, and the
data association problem of matching sounds to tigers make
it hard to represent observation-sequence based policies in
this domain. However, we can write a belief-state query pol-
icy π(θ) of the form:
if Pr(no tiger behind d1 at t) ¿ θ, enter(d1, t)
else if Pr(no tiger behind d2 at t) ¿ θ, enter(d2, t)
...
else listen(t)

We used Alg. 2 to estimate the value of this BSQ pol-
icy for different values of θ. Once we obtain a set of ran-
domly generated sequences of observations and decisions
following π(θ) for a particular value of θ, we can analyt-
ically compute the expected value for any setting of r =
(rsafe, rlisten, rdanger) and γ since they don’t change the
decision and observation functions. We used γ as 1, and the
horizon as 10 in all the experiments. As a baseline, we used
the policy which listens until it finds a door without sounds
and enters it.

Figs. 4 and 5 summarize the results. Each point is an av-
erage of 3 runs, with each run using 100 observation paths.
The standard deviation across runs was less than 1.6 for runs
with at least 10, 000 particles. Fig. 4 shows that the esti-
mated value converges as we increase the number of parti-
cles for π(0.8). Fig. 5 shows the estimated value of π(θ)
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Figure 5: Estimated values for π(θ).
for θ = 0.6, 0.7, 0.8, 0.9, 0.95 for r = (25,−5,−100) and
r = (10,−1,−100). The results show that for high-reward
situations with a high penalty for listening, θ = 0.8 per-
forms best. On the other hand if the potential reward and the
penalty for listening are low, θ ≥ 0.9 performs best, as it is
better to be sure of safety before opening a door.

These results show that Alg. 2 can effectively be used to
optimize a parametric family of BSQ policies by searching
for parameters that yield high expected values.
Blind Monopoly This problem models a version of the
game Monopoly with 20 squares and two players: the agent
and an opponent. The players take turns rolling two die to
move along the board, and can purchase a property they land
on, provided it hasn’t already been bought. If a player lands
on a property belonging to another, s/he must pay rent to the
owner. If a player owns all properties of a color, the rents
of those properties are doubled. The game is “blind”, in
the sense that a player cannot observe the opponent’s hold-
ings or positions. Its only observation about the opponent
is whether or not it receives or pays rent at a timestep. The
objective is to have more cash than the opponent at t = 100.
The initial rent was 35; properties cost 60; and there were
5 colors with three squares each in a pattern similar to the
actual board game (some properties cannot be bought). The
opponent’s policy was to purchase the first available prop-
erty it landed on. It then purchased any other property of
the same color in an effort to complete the set. It also
bought other properties with probability 0.5. In this version
of monopoly, it is very difficult to formulate an FSC policy
that allows the agent to complete a set: such a policy has
to map the past rent observations, to decisions that should
depend on whether or not it is still possible to complete the
agent’s current set or to block the opponent by purchasing
from a different color.

However, BSQ policies can be designed easily. We used
a policy where the agent purchases the first property it lands
on, but makes more purchases than the opponent based on its
belief about the opponent’s holdings. In all purchases other
than for completing its set (the first rule below) it executes
a purchase only if it has sufficient funds to pay at least one
more rent. It’s BSQ policy is to apply the first rule whose
premise holds:
(Complete Set) If the agent owns a property of the current
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Figure 6: Win margin while following a BSQ policy in blind
monopoly.

color, and Pr(opponent not owning one of this color) >
θ1, buy

(Block) If the agent doesn’t own a property of the current
color, and Pr(opponent owning one of this color) > θ2,
buy

(Randomize) Buy with probability 0.5.
Fig. 6 shows the agent wining at t=100. It plots the evo-

lution of the expected value of the agent’s capital minus the
opponent’s capital for θ1 = 0.75, θ2 = 0.5. We used 200
observation paths with 5000 particles.

7. Related Work and Conclusions
To the best of our knowledge, Moore (1985) presented
the first comprehensive FOL formulation of actions that
did not make the unique names assumption and allowed
terms in the language to be partially observable, in a non-
probabilistic framework. In Moore’s formulation actions
could be executed by an agent only if they were “known”
to it. This notion of epistemic feasibility of an action was
also used in later work (Morgenstern 1987; Davis 1994;
2005). These approaches used a significantly larger axioma-
tization to address the problem of syntactically proving and
communicating facts about knowledge. However, this line
of work cannot be used in open-universe probabilistic lan-
guages due to the requirement of reifying possible worlds
and terms as objects in a universe. It also does not address
the problem of expressing observability and action availabil-
ity while conforming to a given agent specification.

Our formulation of action effects uses update rules similar
to successor state axioms proposed by Reiter (2001). How-
ever, usually employed assumptions like having a “closed
initial database” in that line of work preclude the possibil-
ity of expressing identity uncertainty: distinct terms like
Mary and Fiancee(Bond) can never represent the same ob-
ject. Sanner et al. (2010) use this framework for first-order
POMDPs and make the additional assumption that all non-
fluent terms are fully observable. They suggest a same-
as(t1, t2) predicate for representing identity uncertainty be-
tween fluent terms. However, it is not clear how this pred-
icate can be used in conjunction with their unique names
axioms for actions, which assert that instances of an action
applied on distinct terms must be distinct. Wang et al. (2010)
present a relational representation for POMDPs while mak-
ing the unique names and closed world assumptions: in their
framework, action arguments have to be in a known 1-1

mapping with actual objects in the universe, implying that
every object has, a priori, a unique name in the language; ob-
servations directly report properties of such objects. Thus,
representational constraints in prior work on first-order mod-
els for POMDPs disallow the expression of key aspects of
open-universe semantics (e.g. is Mary=Fiancee(Bond)?). In
addition, in contrast to existing approaches, our formula-
tion allows an agent to plan and act upon objects discov-
ered through its sensors. Such problems are commonly en-
countered by agents in the real world. Unfortunately, as
we showed, standard “extensions” of existing frameworks to
handle these problems lead to grossly inaccurate definitions
of an agent’s capabilities.

Recent algorithms for sampling based search for POMDP
policies (Silver and Veness 2010; Guez, Silver, and Dayan
2012) also use a particle filter to carry out belief updates
while searching for history-based policies. Our utilization
of particle filters for evaluating BSQ policies differs on two
main aspects. First, existing approaches rely upon simula-
tions of single state trajectories to obtain an estimate of the
expected value while following a history based policy. As
noted earlier, such trajectories are not sufficient for evaluat-
ing (or even simulating the execution of) BSQ policies. Sec-
ond, we utilize the generative model in a weighted particle
filter rather than the unweighted filter used in the aforemen-
tioned approaches, which treat the POMDP as a black box
model.

Various authors have considered POMDP solutions that
directly map belief states, rather than observation histories,
to actions. BSQ policies offer a compact, expressive form
for such policies. In recent work Kaelbling et al. (2013) pro-
posed an approach for solving partially observable problems
by carrying out regression-based planning over belief states.
In their approach, action specifications are designed to in-
clude preconditions in the form of belief-state fluents. These
fluents can be defined to capture probabilistic queries, which
in turn can be used to indicate when an action is likely to
succeed or be helpful in achieving a goal. However, the so-
lution approach requires action-specific regression functions
over the probabilities of such queries.

Our approach builds on several of the approaches dis-
cussed above to solve the unaddressed problem of accurately
specifying agent models under first-order open-universe se-
mantics, and of evaluating BSQ policies for such models.
Our framework is unique in allowing accurate represen-
tations of planning problems encountered by autonomous
agents in the real-world (as first-order OUPOMDPs). This
is done by drawing upon modal logic semantics. Further,
our experiments showed that optimizing the parameters of
a BSQ policy family can be a viable approach for solving
OUPOMDPs.
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A DTBLOG Model: Airport
This appendix provides a DTBLOG model for the airport
domain. Type declarations are omitted.

0 #Person ˜ Poisson[10]; LocKnownDuration=4;

1 #PersonRef(Src = p, PersonRef_Time=t) {

2 if AtScanner(t)=p ˜Bernoulli(0.5)

3 else = 0};

4 observable(PersonRef);

5 observable(MeasuredHt(p_ref, t))=(AtScanner(t) == Src(p_ref));

6 decision apply_TakePhoto(Orientation o, Distance d, Timestep t);

7 Ht(prsn) ˜ Normal(160, 30);

8 MeasuredHt(p_ref, t) ˜ Normal[Ht(Src(p_ref), t), 5];

9 PictureTaken(Person p, Timestep t){

10 if t’,t>0 & exists PersonRef p_ref Src(p_ref)==p

11 & PersonRef_Time(p_ref) == t’

12 & apply_TakePhotoPRef(p_ref, t-1)

13 & t-1-t’< LocKnownDuration then == True

14 else if t>0 then = PictureTaken(p, t-1)

15 else = False}

16 //Entrance model

17 AtScanner(t) ˜ UniformChoice({Person prsn:

18 !Entered(prsn, t)});

19 Entered(prsn, t){

20 if t>0 & (AtScanner(t-1)=prsn) then = true

21 elseif t>0 then = Entered(prsn, t-1)

22 elseif t=0 then = false};

23 TrueLoc(Person p, t) ˜ MovementModel(loc(p), t-1);

24 Location(p_ref, t) {if PersonRef_Time(p_ref)<Horizon+1 &

25 & t<=Time_P_Ref(p_ref)+LocKnownDuration

26 then ˜ MovementModel(TrueLoc(Src(p_ref), t))

27 else = null};


